Propagating Regular Counting Constraints
نویسندگان
چکیده
Constraints over finite sequences of variables are ubiquitous in sequencing and timetabling. This led to general modelling techniques and generic propagators, often based on deterministic finite automata (DFA) and their extensions. We consider counter-DFAs (cDFA), which provide concise models for regular counting constraints, that is constraints over the number of times a regular-language pattern occurs in a sequence. We show how to enforce domain consistency in polynomial time for at-most and at-least regular counting constraints based on the frequent case of a cDFA with only accepting states and a single counter that can be increased by transitions. We also show that the satisfaction of exact regular counting constraints is NP-hard and that an incomplete propagator for exact regular counting constraints is faster and provides more pruning than the existing propagator from (Beldiceanu, Carlsson, and Petit 2004). Finally, by avoiding the unrolling of the cDFA used by COSTREGULAR, the space complexity reduces from O(n · |Σ| · |Q|) to O(n · (|Σ| + |Q|)), where Σ is the alphabet and Q the state set of the cDFA.
منابع مشابه
Range and Roots: Two Common Patterns for Specifying and Propagating Counting and Occurrence Constraints
We propose Range and Roots which are two common patterns useful for specifying a wide range of counting and occurrence constraints. We design specialised propagation algorithms for these two patterns. Counting and occurrence constraints specified using these patterns thus directly inherit a propagation algorithm. To illustrate the capabilities of the Range and Roots constraints, we specify a nu...
متن کاملThe Range and Roots Constraints: Algorithms and Implementation
We recently proposed a simple declarative language for specifying a wide range of counting and occurrence constraints. The language uses just two global primitives: the Range constraint, which computes the range of values used by a set of variables, and the Roots constraint, which computes the variables mapping onto particular values. In this paper, we demonstrate that this specification langua...
متن کاملThe Range Constraint: Algorithms and Implementation
We recently proposed a simple declarative language for specifying a wide range of counting and occurrence constraints. The language uses just two global primitives: the Range constraint, which computes the range of values used by a set of variables, and the Roots constraint, which computes the variables mapping onto particular values. In order for this specification language to be executable, p...
متن کاملCounting in Trees along Multidirectional Regular Paths
We propose a tree logic capable of expressing simple cardinality constraints on the number of nodes selected by an arbitrarily deep regular path with backward navigation. Specifically, a sublogic of the alternation-free μ−calculus with converse for finite trees is extended with a counting operator in order to reason on the cardinality of node sets. Also, we developed a bottom-up tableau-based s...
متن کاملRegular expression order-sorted unification and matching
We extend order-sorted unification by permitting regular expression sorts for variables and in the domains of function symbols. The obtained signature corresponds to a finite bottom-up unranked tree automaton. We prove that regular expression order-sorted (REOS) unification is of type infinitary and decidable. The unification problem presented by us generalizes some known problems, such as, e.g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014